

Parametric Wormhole Studies on Matrix Acidizing Carbonate Reservoir

Teodoro Marcos Mota, Prof. Dr. Ir. Sudjati Rachmat, DEA

*Lecturer of the School of Petroleum Studies, Lecturer of Petroleum Engineering
Dili Institute of Technology, Timor-Leste, Institut Teknologi Bandung (ITB), Indonesia
Email: teodoro.marcosmota@yahoo.com , sudjati@tm.itb.ac.id*

ABSTRACT

Matrix stimulation is one of the key intervention treatments that is performed to increase well productivity in carbonate formation reservoirs. Stimulation using matrix acidizing can cause a wormhole around the well so that it can increase the permeability around the wellbore which results in decrease of skin values. Wormholes are channels that resemble natural fractures that have very large permeability. Wormhole is the formation of branched holes in formation as a result of acidizing treatment. Skin is a barrier factor that affects the rate of production. Skin is an area of formation that is damaged. Skin formed around the wellbore. If it's positive value mean the area near wellbore is damaged and negative value if the area was improved or stimulated. In this research, by knowing the value of acid volume, permeability ratio (k/ks), porosity of the original formation, fractal dimension and acid injection rate, calculations were performed using the equivalent hydraulic radius concept and making a plot to see the effect on skin factor and productivity index (PI). The indicator of the success of implementing acidizing stimulation can be seen from the decrease in skin factor, increases in well productivity (productivity index ratio) and increased production rates.

Keywords: Well stimulation, matrix acidizing, skin, wormhole, fractal, equivalent hydraulic radius.

1. Introduction

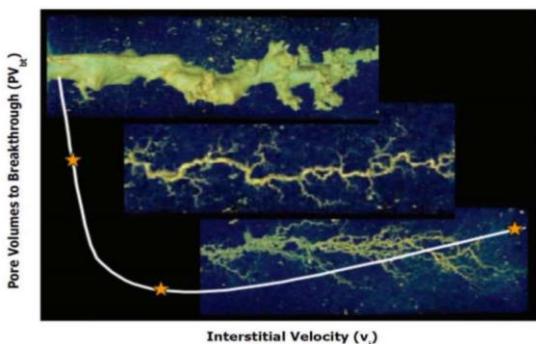
One of the problems in oil and gas production wells is that the wells have very low production rates. This can be caused by low formation permeability and formation damage which causes the skin factor in wells to be positive and large. Formation damage refers to a region of decrease in permeability wells resulting in reduced performance of the wells, which can occur during drilling, cementing, workover operation, production, or even during acidizing and chemical treatment, followed by plugging of pore throats (McLeod, 1984; McLoad, 1989; Kankaria et al., 2017; Mou et al., 2019). Therefore, things that can be done is by stimulation of wells, either by using matrix acidizing or by hydraulic fracturing in order to increase well deliverability (Mahmoud et al., 2014). The purpose of performing well stimulation is to improve formation permeability (Li et al., 2019). Fracture and matrix acidizing are the two key techniques used in well stimulation (Pandey et al., 2018; Ali and Nasr-El-Din., 2019).

Matrix acidizing is a remedial well stimulation that done to overcome formation damage near wellbore or improve the permeability in order to enhance production (Huang et al., 2000; Rae and Lullo, 2003; Bulgakova et al., 2011; Gomma et al., 2015; Nasr-El-Din, et al., 2015; Rabie et al., 2015; Akanni, et al., 2017; Al-Othman et al., 2017; Wei et al., 2017; Alrashidi et al., 2018; Fan et al., 2018; Livescu et al., 2018; Li et al., 2019; Mou et al., 2019; Schwalbert et al., 2019). Matrix acidizing for carbonate reservoirs, Hydrochloric acid (HCL) is injected below the formation fracture pressure and used small amount of acid (Pandey et al., 2018; Ali and Nasr-El-Din, 2019). While in acid fracturing, the volume of acid

injected is relatively large. The acid is always injected at a high rate and pressure or above the fracture pressure of the formation (Hung et al., 1989).

Matrix acidizing is a method of injecting acid into a reservoir under its fracture pressure so that the reaction can spread radially (Kankaria et al., 2017). The efficiency of this process depends on the type of acid used, injection conditions, medium structure, fluid to solid mass transfer, and others (Li et al., 2015). Matrix acidizing is one of the stimulation methods commonly used mainly in carbonate reservoirs. This matrix acidizing method is considered one of the most effective stimulation methods in terms of cost because its stimulation technique is simple and has high success rate (Burton et al., 2018). The result of this stimulation is an increase in permeability around the well due to a wormhole, a channel that resembles a natural fracture that has a very large permeability (Nasr-El-Din et al., 2015). This research aims to study the matrix acidizing of carbonate reservoirs and to see the effect of various factors such as the volume of acid, permeability ratio (k/ks), porosity of the original formation, fractal dimensions, injection rate and it's impact on skin factor and productivity index (PI).

2. Literature Review


2.1. Wormhole

A comprehensive study on wormhole has been conducted to improve the understanding of matrix acidizing in carbonate reservoirs (Burton et al., 2018). Wormhole is reactive acid injected into the formation to dissolve

carbonate rock and creates highly permeable channels (Fan et al., 2018; Cheng et al., 2019).

The wormhole-propagation mechanism has been studied using experiments by many researchers (Hoefner and Fogler., 1988; Pichler et al., 1992; Wang et al., 1993; Daccord et al., 1993a, b; Buijse., 2000). Typical wormhole patterns comprise face dissolution, conical shape, dominant wormhole, ramified wormhole, and uniform dissolution. Researchers found that there exists an optimal injection rate generating dominant wormholes. Below the optimal injection rate, face-dissolutions pattern or conical-shaped wormholes are created whereas ramified or uniform dissolution patterns are generated above the optimal one (Mou et al., 2019).

Matrix acidizing process is characterized by wormhole efficiency (Cheng et al., 2019). Figure 2.1 shows the wormhole patterns under different injection rate (McDuff et al., 2010). When injection rate is low, a compact dissolution patterns is observed, in which acid dissolves a large amount of rock near the core sample inlet. When injection rate is intermediate, a dominant wormhole pattern is created. When the injection rate is high, ramified wormhole is generated. For a given volume of acid injection there is an optimal injection rate under which the deepest wormhole penetration can be achieved (Wang et al., 1993; Cheng et al., 2019).

Figure 2.1. Dissolution patterns at different interstitial velocity (McDuff et al., 2010)

2.2. Acidizing

Acidizing was one of the earliest methods developed for increasing well productivity. The technique was first used in 1895, with patents issued in 1896. The patents describes a technique in which HCl is injected into a limestone formation, where it reacts to create channels within the rock (Al-Othman et al, 2017). Acid stimulation treatments are widely recognized as the primary technique to enhance production and increase injectivity in oil and gas field (Aldakkan et al., 2018). The success of such treatments relies heavily on the proper selection of the recipe and job design based on thorough investigation of the rock mineralogy,

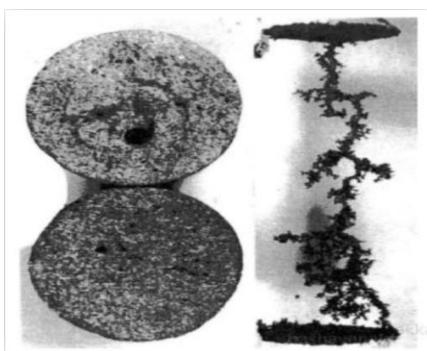
acid-rock reaction mechanism, diversion technologies and damage source (Muecke, 1982).

The goal of acid stimulation is to improve the near-wellbore permeability by propagating dissolution channels called wormholes beyond the drilling-damaged zone and into the original formation (Seagraves et al., 2018). In wormholes there is a very high increase in permeability that will connect the reservoir with the borehole thus increasing the rate of production (Rabie and Nasr-El-Din, 2015).

2.3. Matrix Acidizing

Matrix acidizing has been extensively used as an effective stimulation method to facilitate the development of carbonate reservoir due to the formation of high-permeability channels (Fan et al., 2018). In matrix acidizing in carbonate reservoirs, when acid is injected in to the formation, wormholes (highly conductive flow channels) or different dissolution patterns may form, depending on the properties of the rock and the acid system, as well as the injection rate (Seagraves et al., 2018; Schwalbert et al., 2019). The relationship between these dissolution patterns and the acidizing results has been studied before (Daccord et al., 1989; Fredd and Fogler., 1996; Fredd et al., 1997; McDuff et al., 2010).

Matrix acidizing may be implemented as a remedial method to minimize resultant skin (Aldakkan et al., 2018). Matrix carbonate acidizing is commonly conducted with HCl in concentration between 15-20 wt% (Aldakkan et al., 2018; Pandey et al., 2018). Carbonate reservoir, including limestones, chalks, and dolomites, are stimulated with simple acid systems, such as HCl while sandstone reservoirs are treated with more complex acid systems containing HF or HF/HCl mixtures (Burton et al., 2018). HCl is the commonly utilized fluid in acidizing treatments in carbonates (Aldakkan et al., 2018). Petroleum engineers usually use HCl solutions as acidizing fluids, but reservoir, fluids and compaction conditions may dictate the use of organic acids, chelating agents, or emulsified acids (Ali and Nasr-El-Din., 2019). HCl is the most commonly used acid in matrix acidizing of carbonates due to its cost effectiveness, availability, and soluble reaction products (Muecke, 1982; Kankaria et al., 2017).


Williams et al. (1979) describe the chemical stoichiometries reaction of HCl with limestone, dolomite and siderite are illustrated in equation 1-3:

- a) Calcite: $2\text{HCl} + \text{CaCO}_3 \longrightarrow \text{CaCl}_2 + \text{H}_2\text{O} + \text{CO}_2$ (1)
- b) Dolomite: $4\text{HCl} + \text{CaMg}(\text{CO}_3)_2 \longrightarrow \text{CaCl}_2 + \text{MgCl}_2 + 2\text{H}_2\text{O} + 2\text{CO}_2$ (2)
- c) Siderite: $2\text{HCl} + \text{FeCO}_3 \longrightarrow \text{FeCl}_2 + \text{CO}_2 + \text{H}_2\text{O}$ (3)

HCl is cheap, it has a high rock dissolving power and the reaction products are usually soluble. HCl-carbonate

reaction is also fast, especially at the higher temperatures encountered down hole (Buijse et al., 2003). The rapid reaction of HCl with carbonate rocks results in the formation of wormholes, which is the primary purpose of matrix acidizing in carbonates (Aldakkan et al., 2018). The effective penetrations of HCl can range from 1-5 ft (Aldakkan et al., 2018).

Figure 2.2 shows the wormhole profile created by the acid dissolution of limestone (Hoefner and Fogler, 1987). Table 1 summarizes the recommended acid package per treatment type (Guo et al., 2007).

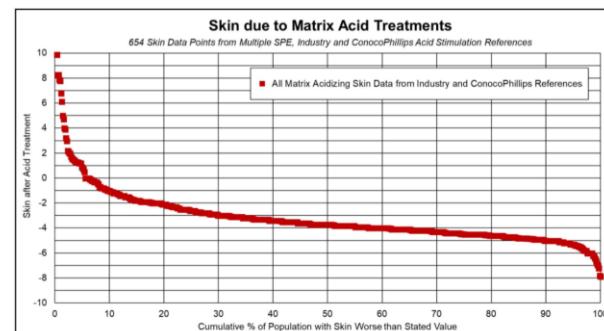
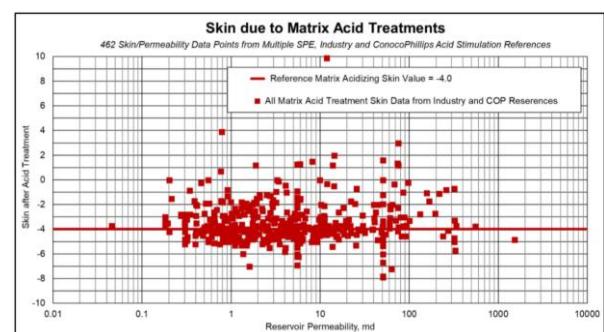

Figure 2.2. Wormhole profile created by acid dissolution in limestone cores (Hoefner and Fogler, 1987).

Table 1. Recommended acid package per carbonate acidizing treatment type (Guo et al., 2007).

Treatment Type	Damaged Perforations	Deep Wellbore Damage
Acid	5% Acetic Acid	15% HCl
	9% Formic Acid	28% HCl
	10% Acetic Acid	Emulsified Acid
	15% HCl	


Stimulation with matrix acidizing using HCl has high success rate and enhance production rate on carbonate reservoirs (Burton et al., 2018). As an example, some wells in the northern Buzurgan oil field before acidizing treatment only produced 1139 bbl/d, but after acidizing treatment cleared the scale, lowering the skin factor to -2.8 thereby increasing production at the well reaching 1571 bbl/d (Gao et al., 2019). Furthermore, there are more literature survey carried over more 500 wells in Middle Eastern, North Sea, Caspian, Southeast Asian, and North American fields show that high-rate matrix acidizing techniques can be used to effectively stimulated carbonate reservoirs (Burton et al., 2018). Field-post stimulation pressure buildup and production test data for carbonate matrix acidizing presented by Furui et al., (2012a) show that skin factors collected from separate groups of Middle Eastern Limestone and North Sea

chalk wells both have P50/median skin values in the -3.5 to -4.0 range. Additional public data (Singh, 1985; Bartko et al., 1997; Chambers et al., 1997; MaGee et al., 1997; Aslam and Al Salat, 1998; Bazin et al., 1999; Gong and El-Rabaa, 1999; Sannier et al., 1999; Al-Dhalan and Nasr-El-Din, 2000; Fredd and Miller, 2000; Sharaf et al., 2000; Al-Dhafeeri et al., 2002; Thomas and Nasr-El-Din, 2003; Bitanov, 2005; Albuquerque et al., 2006; Abou-Sayed et al., 2007; Arangth et al., 2008; Haldar et al., 2008; Rachmawati et al., 2008; Thabet et al., 2009; Foglio and Wtorek, 2010; Ussenbayeva et al., 2012; Van Domelen et al., 2012; Jardim Neto, A.T. et al., 2013; Clancey et al., 2014; Cui et al., 2014; Folomeev et al., 2014; Kayumov et al., 2014; Issa et al., 2015) and additional ConocoPhillips data has been added to the original dataset to provide the plot showing in figure 2.3. As shown, P50/median skin values from the larger, combined data sets are in the same -3.5 to -4.0 range as reported previously (Burton et al., 2018).

Figure 2.3. Industry skin data for matrix acidized carbonate wells (Burton et al., 2018).

The data set compiled for figure 2.3 covers a wide range of carbonate rock types with reservoir permeabilities ranging from less than 0.1 md to over 1000 md as shown in figure 2.4.

Figure 2.4. Industry skin data for matrix acidized carbonate wells vs reservoir permeability (Burton et al., 2018).

Review of the information in Figure 2.3 and 2.4 indicates that carbonate matrix acidizing results are roughly

similar over a wide range of well types, rock types, and reservoir permeabilities (Burton et al., 2018).

2.4. Skin Factor

Skin factor is a numerical factor that is used to measure formation damage and to model the additional pressure drop created due to skin (Elshahawi et al., 2001; Yildiz, 2006; Byrne and McPhee, 2012; Mohamed et al., 2014; Patel and Singh, 2016; Al-Othman et al., 2017; Schwalbert et al., 2019). Skin can be defined as the additional pressure drop in the near wellbore area that result from the drilling, completion and production practices used (Van Everdingen, 1953).

A positive skin factor is obtained when the near wellbore region has permeability lower than the native formation permeability (formation damage), while negative skin factor means the permeability of the near wellbore region has been increased (stimulation) (Byrne and McPhee, 2012; Mohamed et al., 2014; Patel et al., 2016; Shirley et al., 2017; Burton et al., 2018; Schwalbert et al., 2019). The skin factor obtained has a direct impact on the productivity of the well (Shirley et al., 2017). The degree to which the skin factor will impact the overall productivity/injectivity essentially depends on the wellbore geometry relative to the reservoirs (Shirley et al., 2017). Skin cause decrease in production wells, so skin also consider as an economic problem. Therefore, reducing the skin factor can also improve the productivity index and recovery rate for the well which further improves the project's net present value (Shirley et al., 2017; Burton et al., 2018; Gao et al., 2019).

Hawkins (1956), presented the following model to calculate the skin factor using the permeability and radius of the skin zone:

$$s = \left(\frac{k}{ks} - 1 \right) x \ln \left(\frac{rs}{rw} \right) \quad (4)$$

Muscat, show the comparison of fluid productivity of damaged and undamaged wells with uniform permeability (Williams et al., 1979), as follows:

$$\frac{J_s}{J_o} = \frac{F_k \log (re / rw)}{\log (rs / rw) + F_k \log (re / rs)} \quad (5)$$

2.5. Planing Procedure Matrix Acidizing in Carbonate Reservoirs

Successful acid stimulation depends on three important treatment parameters which are fluid volume, injection flow rate, and fluid type (Van Domelen et al., 2011). Williams et al. (1979) describe matrix acidizing planing procedure in carbonate reservoirs are as follows:

Step 1: determine the fracture gradient for the well. The best data is obtained from the shut-in pressure measured during

or immediately after fracture treatment. If no recent data can be obtained, the fracture gradient can be estimated with the approach relationship as given in the following equation:

$$gf = \alpha + (go - \alpha) x (Pr / D) \quad (6)$$

Step 2: estimate the maximum possible injection rate without fracturing with the equation:

$$qi_{\max} = \frac{4,917 \cdot 10^{-6} k h (gf D - P_r)}{\mu \ln (re / rw)} \quad (7)$$

Step 3: estimate the maximum surface pressure without friction for fluids that can be injected without fracturing the formation by the equation:

$$P_{max} = (gf - gha) x D \quad (8)$$

Step 4: determine the volume and type of acid being injected.

2.6. Fractals and Fractal Dimension

Fractal is the dissolution patterns of acid injected into carbonate formations. Fractals are shapes that grow proportionally to a fractal dimension (Frick et al., 1994). The fractal dimension is constant for each fractal object, regardless of the scale at which it is observed (Frick et al., 1994).

To determine the fractal dimension (df) we need to know the number of units (N) within a certain radius (R), it can also be written:

$$N(R) \approx R^{df} \quad (9)$$

For a 2D cluster of fractals, the constant varies between one and two (example 1.46) (Frick et al., 1994). From equation 9 above, we can determine the fractal dimension of a fractal object by calculating the slope plot between $\ln N(R)$ and $\ln R$.

$$d_f = \lim_{R \rightarrow \infty} \frac{\ln N(R)}{\ln R} \quad (10)$$

where N (R) is the number of units growing within a certain radius (R).

2.7. Equivalent Hydraulic Radius

Equivalent hydraulic radius (r_{eq}) is introduced that represents the radius of a zone of negligible pressure drop (Frick et al., 1994). The following describes the various zones:

Zone 1. Nearest to the well: the wormhole creates new permeability, considered to be independent of the permeability of the previously damaged zone. The channels

are wide and the pressure drop can be ignored, so the pressure is constant within the wormholes.

Zone 2. Transition zone: the flow is divided between wormhole and porous medium. Ignoring this transition zone leads to equivalent hydraulic radius.

Zone 3. Zone outside the stimulation area: this zone is a porous media outside the stimulated area where the pressure varies radially according to Darcy's law. The wormhole radius will be replaced by the equivalent hydraulic radius which is a function of the fractal dimension (Frick et al., 1994).

The relationship between fractal dimensions and the radius of the observation area can be written as follows:

$$r_{eq} = \left(r_w^{df} + \frac{V_{acid}}{L_{inj}} N_{ac} N_{pe}^{-\frac{1}{3}} \frac{b}{\pi \phi} \frac{df}{2} \right)^{\frac{1}{df}} \quad (11)$$

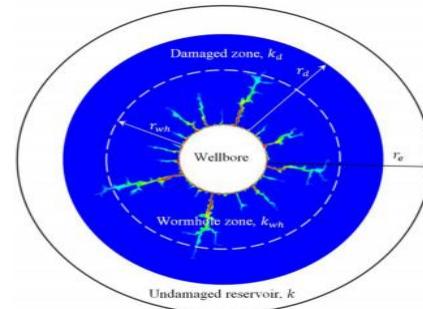
2.8. Calculation of the Post-Treatment Skin Effect

According to Muskat's formulation for two zones, a model was presented to explain the effect of post treatment skin for three zones with different permeability values (Frick et al., 1994).

- For a stimulated zone, ($r_w \leq r \leq r_{eq}$), $p = \text{constant}$.
- For a still damaged zone, ($(r_{eq} \leq r \leq r_s)$, Darcy's Law.
- For the original formation zone, ($r_s \leq r \leq r_e$), Darcy's Law

For the case of three zones, the post treatment skin effect can be determined by the equation:

$$s = \frac{k}{k_s} \ln \frac{r_s}{r_{eq}} - \ln \frac{r_s}{r_w} \quad , r_{eq} \leq r_s \quad (12)$$


In the case of two zones, if the wormhole radius is greater than the damage radius the equation is as follows:

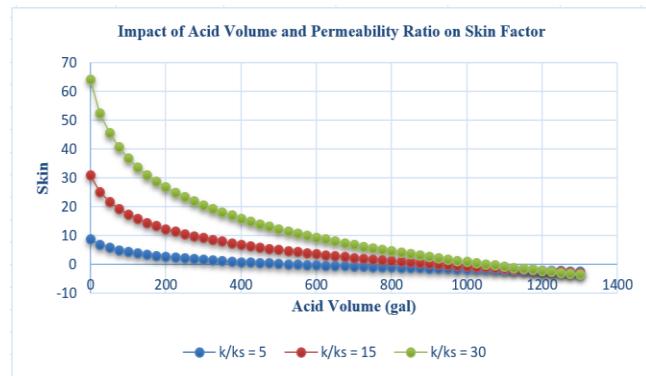
- The stimulated zone, ($(r_w \leq r \leq r_{eq})$, $p = \text{constant}$.
- Original formation zone, ($r_{eq} \leq r \leq r_e$), Darcy's Law.

The post-treatment skin effect equation can be written as follows:

$$s = -\ln \left(\frac{r_{eq}}{r_w} \right) , r_s \leq r_{eq} \quad (13)$$

Figure 2.5 is used to calculate the skin factor before and after matrix acidizing, which shows a partition of the near-wellbore region into several zones with different radius and permeability (Bekibayev et al., 2015).

Figure 2.5. Schematic illustration of the near-wellbore zone with a variety of areas (Bekibayev et al., 2015).


3. Research Methods

The analysis and calculations carried out by this research are using well, reservoir and stimulation data by assuming the stimulation is carried out along the thickness of the vertical well formation. The data used in this research is shown in table 2 (appendix). With the flow of research to be carried out can be seen in figure 3.1 (appendix).

4. Results

4.1. Impact of Acid Volume and Permeability Ratio on Post Treatment Skin Effect

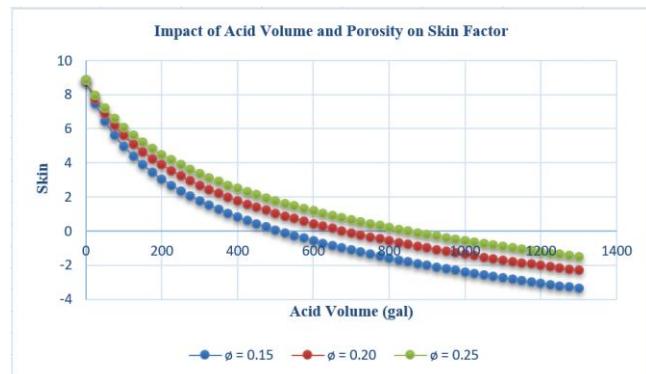

Figure 4.1 is the result of the plot of the merging ratio permeability value. This graph clearly shows that adding acid volume to different permeability ratio will decrease different skin values, especially with large permeability ratio, it will decrease skin factor to negative. This is because the acid injected into the reservoir will flow in areas of large permeability and form a conductive channel in the rock thus giving a reduction in the skin factor (Byrne and McPhee, 2012; Mohamed et al., 2014; Patel et al., 2016; Shirley et al., 2017; Kankaria et al., 2017; Burton et al., 2018; Schwalbert et al., 2019). The results figure 4.1 show the initial skin value of 8.85, 30.98, 64.18, after adding 1300 gal of acid volume to the permeability ratio (k/ks) of 5 md, 15 md, 30 md gave the skin a decrease of -2.43, -2.88, and -3.55. The results table 3 (appendix) explain the acid volume value, the hydraulic equivalent radius value and the value of skin reduction at different permeability ratio.

Figure 4.1. Impact of acid volume and permeability ratio (k/ks) 5 md, 15 md and 30 md on the post treatment skin effect.

4.2. Impact of Acid Volume and Porosity on Post Treatment Skin Effect

The graph below is the plot result of combining porosity values. From this graph by adding acid volume to different porosity values will result in decrease of skin factor. Figure 4.2 show an initial skin value of 8.85, after adding 1300 gal of acid volume to porosity 0.15, 0.20, 0.25 giving a decrease in skin to -3.36, -2.30, and -1.50. The results table 4 (appendix) explain the acid volume value, the hydraulic equivalent radius value and the skin reduction value at the different of the original formations porosity.

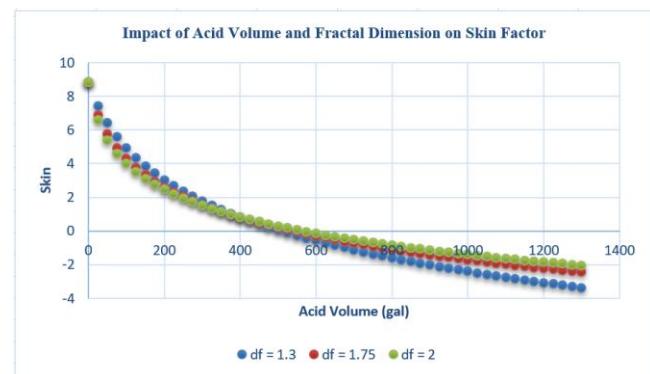


Figure 4.2. Effect of acid volume and porosity (ϕ) 0.15, 0.20, 0.25 on the post treatment skin effect.

4.3. Impact of Acid Volume and Fractal Dimension on Post Treatment Skin Effect

The graph below is a plot result of combining fractal dimension values. The smaller of fractal dimension value formed will have a better effect on decrease skin factor. This

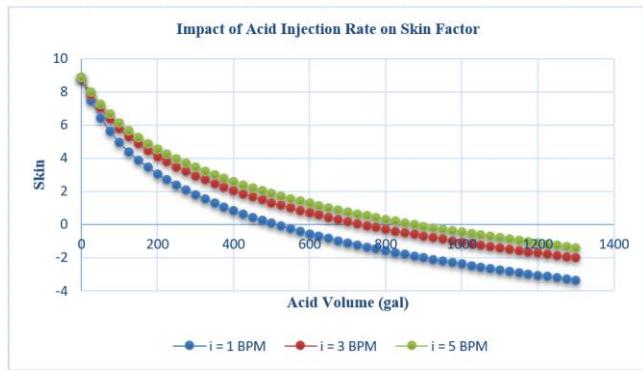

is because the small fractal dimension value has a long and branched wormhole shape, so it is able to penetrate the damage zone (Daccord et al., 1989; Fredd and Fogler., 1996; Fredd et al., 1997; McDuff et al., 2010; Seagraves et al., 2018; Schwalbert et al., 2019). The results figure 4.3 show that the initial skin value is 8.85, after adding 1300 gal of acid volume to the fractal dimensions 1.3, 1.75, 2 has a better effect on reducing the skin to -3.36, -2.43, -2.04. The results table 5 (appendix) explain the acid volume value, the equivalent hydraulic radius value and the skin reduction value at different fractal dimensions.

Figure 4.3. Impact of acid volume and fractal dimension values (df) 1.3, 1.75, 2 on the post treatment skin effect.

4.4. Impact of Acid Injection Rate on Post Treatment Skin Effect

The graph below shows the effect of acid injection rate on skin factors and stimulation performance. The results figure 4.4 show the initial skin value of 8.85, after adding 1300 gal of acid volume with an injection rate of 1 BPM, 3 BPM and 5 BPM giving skin decreases to -3.36, -2.02 and -1.41. The results of this analysis show that the optimal acid injection rate for matrix acidizing is 1 BPM because it gives a significant decrease in skin value -3.36. This is because at a small injection rate the volume of acid injected into the rock surface will form a wider, dominant and branched wormhole that will improve the damage zone and influence the skin factor (Wang et al., 1993; Cheng et al., 2019; Mou et al., 2019). Table 6 explain the effect of injection rate on skin factors on stimulation results.

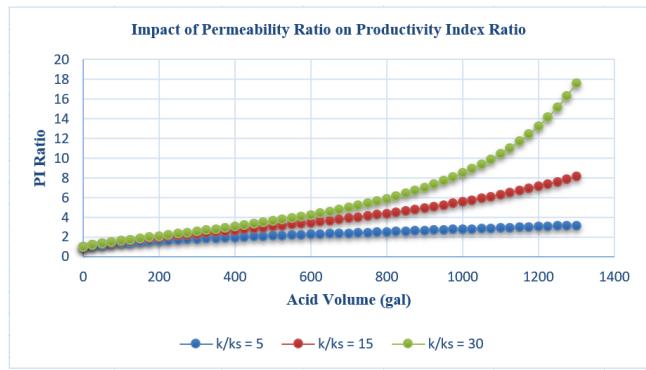

Figure 4.4. Impact of acid injection rate 1 BPM, 3 BPM, 5 BPM on the post treatment skin effect.

Table 6. Impact of injection rate on stimulation results.

Injection rate, bpm	Skin, pre-treatment	Skin, post-treatment
1	8.85	-3.36
3	8.85	-2.02
5	8.85	-1.41

4.5. Impact of Permeability Ratio on Productivity Index Ratio

The graph below is the result plot of the combined value of permeability ratio. From the plot results figure 4.5 show that adding an acid volume to a large permeability ratio will provide a significant increase in the productivity index ratio (PI ratio). Smaller value of permeability ratio will have a small effect on increasing the PI ratio. This is because the small permeability ratio has a small gap or space to pass fluid from productive formation into the wellbore and vice versa. The results of the research in figure 4.5 show after addition of 1300 gal acid volume to the permeability ratio (k/ks) of 5 md, 15 md, 30 md gives an increase in PI ratio of 3.16, 8.11, 17.58. The results of study in table 7 explain the effect of k/ks on the PI ratio in stimulation results.

Figure 4.5. Impact of permeability ratio (k/ks) 5 md, 15 md, 30 md on PI ratio.

Table 7. Effects of permeability ratio on stimulation results.

Permeability ratio, md	PI ratio, pre-treatment	PI ratio, post-treatment
5	1	3.16
15	1	8.11
30	1	17.58

5. Conclusions and Recommendations

5.1. Conclusions

The following conclusions can be drawn from this work:

1. The results of the research show that adding acid volume to different permeability ratio (k/ks) will give a significant reduction in skin factor. Results of the study showed the initial skin pre-treatment was 8.85, 30.98, 64.18, after treatment with 1300 gal acid volume in the k/ks 5 md, 15 md, 30 md gave a decrease in skin factor -2.43, -2.88, and -3.55.
2. The results show that after treatment with the addition of acid volume at different porosity values, it will give a different skin factor reduction. The results showed initial skin factor before treatment was 8.85, after treatment with the addition of 1300 gal acid volume to the porosity of the original formation 0.15, 0.20, 0.25 gave a decrease in the skin factor -3.36, -2.30, and -1.50.
3. Research show that the smaller of fractal dimension value formed would have a better effect on the decrease in skin factors. Results of study showed an initial skin factor of 8.85, after acidizing with the addition of 1300 gal acid volume in the fractal dimensions 1.3, 1.75, 2 had a better effect on decreasing the skin factor to -3.36, -2.43, -2.04.

4. From the results of the study showed that effect of injection rate is very important on the performance of the stimulation. The results of the analysis show that an initial skin factor of 8.85, after acidizing with an additional volume of 1300 gal of acid with an injection rate of 1 BPM, 3 BPM, 5 BPM gave a decrease in the skin factor -3.36, -2.02 and -1.41.

5. Results showed high permeability ratio and small fractal dimension, resulting in a good increase in productivity index (PI) and significant decrease in skin factor ($S < -3.55$). From the results of the analysis of the study showed initial value of the productivity index ratio (PI ratio) is 1, after treatment with acid volume of 1300 gal on permeability ratio (k/ks) 5, 15, 30 had impact on increasing the PI ratio 3.16, 8.11, and 17.58.

5.2. Recommendations

1. Need to know in advance the source and degree of formation damage, rock type when designing stimulation with matrix acidizing which includes selection of the proper type of acid, techniques and appropriate implementation in the field in order to reduce formation damage, low skin factor, enhance permeability formation and improving productivity of wells.

2. It is best to do drilling with underbalanced drilling and underbalanced completion methods to prevent formation damage due to lost circulation in the fracture zone.

3. It is better before acidizing, needs to evaluated in advance the cause of decreased in production rate, in term of production facilities, sub-surface condition; insufficient driving energy, decreased reserves and/or low permeability, so that it will facilitate the process of stimulation, safe, less toxic, environmental friendly, and cost effective in designing acidizing treatment.

Acknowledgements

The author would like to acknowledge Prof. Dr. Ir. Sudjati Rachmat, DEA and colleague at Institute Teknologi Bandung (ITB) for valuable discussions during the course of this work. The author also thank Dr. Ir. Estanislau de Sousa Saldanha editor in chief and colleague for preparing and granting permission to publish this manuscript.

Nomenclature

α	= constant, range between 0.33-0.50
b	= constant Daccord, $1.7 \times 10^4 m^{df-2}$
C_{acid}	= acid concentration, mol/L ³ , mol/ft ³
df	= fractal dimension, dimensionless
D	= diffusion constant, 10^{-5} ft ² /sec
D	= well depth, ft
F_k	= original permeability of formation to skin permeability, md
gf	= fracture gradient, psi/ft
gha	= acid hidrostatics gradient, psi/ft
go	= overburden gradient, psi/ft
h	= formation thickness, L, ft
i	= injection rate, L ³ /t, ft ³ /sec, bbl/min
J_s	= PI of damaged well, L ⁴ /m, STB/D-psi
J_o	= PI of stimulated well, L ⁴ /m, STB/D-psi
k	= permeability of improved (stimulated) zone, L ² , md
k_s	= permeability of damaged zone (skin), L ² , md
k/ks	= permeability ratio, L ² , md
L_{inj}	= length of stimulated interval, L, ft
μ	= acid viscosity, cp
M_{min}	= molecular weight of dissolvable mineral, lbm/mol
$N(R)$	= many units at a radius
N_{ac}	= acid capacity number, dimensionless
N_{Pe}	= Peclet number, dimensionless
ϕ	= porosity
p_{max}	= maximum fluid pressure, psi/ft
Pr	= reservoir pressure, psi
qi_{max}	= maximum injection rate, bbl/ft
re	= drainage radius, L, ft
r_{eq}	= equivalent hydraulics radius, ft
r_s	= radial penetration of damage, L, ft
r_w	= wellbore radius, L, ft
r_{WH}	= wormhole radius, L, ft
s	= skin factor, dimensionless
V_{acid}	= acid volume, gal, ft ³

Greek

γ	= stoichiometric constant, dimensionless
ρ_{Min}	= density of dissolved mineral, m/L ³ , lbm/ft ³

References

Abou-Sayed, I. S., Shuchart, C. E., Choi, N. H. et al. (2007), Well Stimulation Technology for Thick, Middle East Carbonate Reservoirs. Presented at the International Petroleum Technology Conference, Dubai, UAE, 4-6 December. <https://doi.org/10.2523/IPTC-11660-MS>.

Albuquerque, M. A., Ledergerber, A. G., Smith, G. L., et al. (2006), Use of Novel Acid System Improves Zonal Coverage of Stimulation Treatments in Tengiz Field. Presented at the SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 15-17 February. SPE-98221-MS. <https://doi.org/10.2118/98221-MS>.

Al-Dhafeeri, A. M., Engler, T. W. and Nasr-El-Din, H. A. (2002), Application of Two Methods to Evaluate Matrix Acidizing Using Real-Time Skin Effect in Saudi Arabia. Presented at the SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, 20-21 February. SPE-73703-MS. <https://doi.org/10.2118/73703-MS>.

Aldakkan, B., Al Moajil, A. M., Alnoaimi, K., et al, (2018), Carbonate Acidizing and Flowback Analysis- A Review and an Evaluation Method. Presented at the Asia Pacific Drilling Technology Conference held in Bangkok, Thailand, 27-29 August. IADC/SPE-191017-MS.

Al-Dhalan, M. N. and Nasr-El-Din, H. A. (2000), A New Technique to Evaluate Matrix Acid Treatments in Carbonate Reservoirs. Presented at the SPE International Symposium on Formation Damage Control, Lafayette, Louisiana, 23-24 February. SPE-58714-MS. <https://doi.org/10.2118/58714-MS>.

Ali, M. T. and Nasr-El-Din, H. A. (2019), A Robust Model To Simulate Dolomite-Matrix Acidizing. SPE Production and Operation. SPE-191136-PA.

Al-Othman, M., Buhamad, A., Al-Mohammad, H., (2017), Unique Carbonate Matrix Stimulation Software, Customized for KOC. Presented at the SPE Kuwait Oil and Gas Show and Conference held in Kuwait City, Kuwait, 15-18 October. SPE-187642-MS.

Alrashidi, H., Ibrahim, A. F., and Nasr-El-Din, H. (2018), Bio-Oil Dispersants Effectiveness on AsphalteneSludge During Carbonate Acidizing Treatment. Presented at the SPE Trinidad and Tobago Section Energy Resource held in Port of Spain, Trinidad and Tobago, 25-26 June. SPE-191165-MS.

Akanni, O. O., Nasr-El-Din, H. A., Gusain, D. (2017), A Computational Navier-Stokes Fluid-Dynamics-Stimulation Study of Wormhole Propagation in Carbonate-Matrix Acidizing and Analysis of Factors Influencing the Dissolution Process. SPE-187962-PA.

Arangth, R., Hopkins, K. W., Kungershausen, D., et al. (2008), Successful Stimulation of Thick, Naturally-Fractured Carbonates Pay Zones in Kazakhstan. Presented at the SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 13-15 February. SPE-112419-MS. <https://doi.org/10.2118/112419-MS>.

Aslam, J. and Al Salat, T. (1998), Stimulation of Horizontal Wells in Carbonate Reservoirs. Presented at the 8th Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, 11-14 October. SPE-49493-MS. <https://doi.org/10.2118/49493-MS>.

Bartko K. M., Acock, A. M., Robert, J. A., et al. (1997), A Field Validated Matrix Acidizing Simulator for Production Enhancement in Sandstone and Carbonates. Presented at the SPE European

Formation Damage Conference, The Hague, The Netherlands, 2-3 June. SPE-38170-MS. <https://doi.org/10.2118/38170-MS>.

Bazin, B., Charbonnel, P. and Onaisi, A. (1999), Strategy Optimization for Matrix Treatments of Horizontal Drains in Carbonate Reservoirs, Use of Self-Gelling Acid Diverter. Presented at the European Formation Damage Conference, The Hague, The Netherlands, 31 May-1 June. SPE-54720-MS. <https://doi.org/10.2118/54720-MS>.

Bekibayev, T. T., Beisembetov, I. K., Assilbekov, B. K., et al., (2015), Study of the Impact of Reduced Permeability Due to Near-Wellbore Damage on the Optimal Parameters of the Matrix Acidizing in Carbonate Rocks. Presented at the Annual Caspian Technical Conference and Exhibition, Baku, Azerbaijan, 4-6 November. SPE-177372-MS.

Bitanov, A. A., Nadezhdin, S. V., Adilgeree, R. S. (2005), Productivity Impact from Matrix Stimulating Thick Intervals Using a Nondamaging Self-Diverting Acidizing System: A Northwestern Kazakhstan Case Study. Presented at the 14th SPE Middle East Oil & Gas Show and Conference, Bahrain, Saudi Arabia, 12-15 March. SPE-92831-MS. <https://doi.org/10.2118/92831-MS>.

Buijse, M. A. (2000), Understanding Wormholing Mechanisms Can Improve Acid Treatments in Carbonate Formations. SPE Prod & Fac 15 (3): 168-175. SPE-65068-PA. <https://doi.org/10.2118/65068-PA>.

Buijse, M., Boer, P., Breukel, B., et al., (2003), Organic Acids in Carbonate Acidizing. Presented at the SPE European Formation Damage Conference, The Hague, The Netherlands, 13-14 May. SPE-82211-MS.

Bulgakova, G.T., Kharisov, R. Y., Sharifullin, A. R., et al., (2011), Optimizing the Design of Matrix Treatments. Presented at the SPE European Formation Damage Conference held in Noordwijk, The Netherlands, 7-10 June. SPE-143959-MS.

Burton, R. C., Nozaki, M., Zwarich, N. R., et al., (2018), Improved Understanding of Acid Wormholing in Carbonate Reservoirs Through Laboratory Experiments and Field Measurements. Presented at the SPE Annual Technical Conference and Exhibition held in Dallas, Texas, 24-26 September. SPE-191625-MS.

Byrne, M. T., and McPhee, C. A., (2012), The Extinction of Skin. Presented at the SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 15-17 February. SPE-151807-MS.

Chambers, K. T., Hallagers, W. S., Kabir, C. S., et al. (1997), Characterization of a Carbonate Reservoir Using Pressure Transient Tests and Production Logs: Tengiz Field, Kazakhstan. Presented at the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 5-8 October. SPE-38657-MS. <https://doi.org/10.2118/38657-MS>.

Cheng, H., Schwalbert, M. P., Hill, A. D., et al., (2019), A Fundamental Model for Wormhole Formation Including Multiphase Flow. Presented at the International Petroleum Technology Conference, Beijing, China, 26-28 March. IPTC-19121-MS.

Clancey, B., Aly, M., Bugti, M., et al. (2014), Barzan Completions Success Through Innovative Stimulation and Testing Technologies. Presented at the International Petroleum Technology Conference, Doha, Qatar, 19-22 January. IPTC-17307-MS. <https://doi.org/10.2523/IPTC-17307-MS>.

Cui, B., Feng, P., Rong, X., et al. (2014), Acidizing Technology of Carbonate Reservoir Used for Enhance Oil Recovery in the Oil Field of Irak. Presented at the 24th International Ocean and Polar Engineering Conference, Busan, South Korea, 15-20 June. ISOPE-I-14-035.

Daccord, G., Touboul, E., & Lenormand, R. (1989, February 1), Carbonate Acidizing: Toward a Quantitative Model of the Wormholing Phenomenon. Society of Petroleum Engineers. doi: 10.2118/96892-MS.

Daccord, G., Lenormand, R., and Lietard, O. (1993a), Chemical Dissolution of a Porous Medium by a Reactive Fluid-I. Model for the "Wormholing" Phenomenon. *Chem. Eng. Sci.* 48 (1): 169-178. [https://doi.org/10.1016/0009-2509\(93\)80293-Y](https://doi.org/10.1016/0009-2509(93)80293-Y).

Elshahawi, H. M. and Gad, K. H., (2001), Estimation of Skin for High Deliverability Gas Well Tests. Presented at the SPE Middle East Oil Show, Bahrain, 17-20 March.

Daccord, G., Lietard, O., and Lenormand, R. (1993b), Chemical Dissolution of a Porous Medium by a Reactive Fluid-II. Convection vs. Reaction, Behavior Diagram. *Chem. Eng. Sci.* 48 (1): 179-186. [https://doi.org/10.1016/0009-2509\(93\)80294-Z](https://doi.org/10.1016/0009-2509(93)80294-Z).

Fan, Z., Li, X., Ostermann, R. D., et al., (2018), An Efficient Method to Determine Wormhole Propagation During Matrix Acidizing. Presented at the SPE Unconventional Resources Technology Conference held in Houston, Texas, USA, 23-25 July. URTeC-2902519.

Foglio, G. and Wtorek, S. (2010), Kashagan Field: Defining Stimulation Methodology, Implementation, and Results Evaluation to Provide a Program Redesigning Criterion. Presented at the SPE Annual Technical Conference and Exhibition, Florence, Italy, 19-22 September. SPE-134403-MS. <https://doi.org/10.2118/134403-MS>.

Folomeev, A. E., Sharifullin, A. R., Murinov, K. Y., et al. (2014), Theory and Practice of Acidizing High Temperature Carbonate Reservoirs of R. Trebs Oil Field, Timan-Pechora Basin. Presented at the SPE Russian Oil and Gas Exploration and Production Technical Conference and Exhibition, Moscow, Russia, 14-16 October. SPE-171242-MS. <https://doi.org/10.2118/171242-MS>.

Fredd, C. N. and Miller, M. J. (2000), Validation of Carbonate Matrix Stimulation Models. Presented at the SPE International Symposium on Formation Damage Conference, Lafayette, Louisiana, 23-24 February. SPE-58713-MS. <https://doi.org/10.2118/58713-MS>.

Fredd, C. N., and Fogler, H. S. (1996), Alternative Stimulation Fluids and Their Impact on Carbonate Acidizing. Presented at the International Symposium on Formation Damage Control, Lafayette, LA, USA, 14-15 February. SPE 31074. <https://dx.doi.org/10.2118/31074-MS>.

Fredd, C. N., Tjia, R., and Fogler, H. S. (1997), The Existence of an Optimum Damkohler Number for Matrix Stimulation of Carbonate Formations. Presented at the SPE European Formation Damage Conference, The Hague, The Netherlands, 2-3 June 1997. SPE 38167. <https://dx.doi.org/10.2118/38167-MS>.

Frick, T. P., Kurmayr, M., and Economides, M. J., (1994), Modeling of Fractal Patterns in Matrix Acidizing and Their Impact on Well Performance. SPE Production & Facilities, Texas A & M, February 1994, SPE-23789-PA.

Furui, K., Burton, R. C., Burkhead, D. W., et al., (2012a), A Comprehensive Model of High-Rate Matrix-Acid Stimulation for Long Horizontal Wells in Carbonate Reservoirs: Part I-Scaling UP Core-Level Acid Wormholing to Field Treatments. *SPEJ*. 17 (1): 271-279. SPE-134265-PA. <https://doi.org/10.2118/134265-PA>.

Gao, J., Feng, P., Wang, D., et al., (2019), Large Liquid Volume Deep Penetration Acidizing in Iraq Missan Oilfield-3 Case Study. Presented at the SPE International Petroleum Technology Conference held in Beijing, China, 26-28 March. IPTC-19549-MS.

Gomaa, A. M., Nino-Penaloza, A., Cutler, J., et al., (2015): Insights of Wormhole Propagation During Carbonate Acidizing: Constant Pressure vs. Constant Rate. Presented at the SPE Annual Technical Conference and Exhibition held in Houston, Texas, USA, 28-30 September. SPE-174790-MS.

Gong, M. and El-Rabaa, A. M. (1999), Quantitative Model of Wormholing Process in Carbonate Acidizing. Presented at the SPE Mid-Continent Operations Symposium, Oklahoma City, Oklahoma, USA, 28-31 March. SPE-52165-MS. <https://doi.org/10.2118/52165-MS>.

Guo, B., Lyons, W. C., and Ghalambor, A. (2007), Petroleum Production Engineering. Burlington: Gulf Professional Publishing.

Haldar, S., Al-Jandal, A. A., Al-Driweesh, S. M. (2008), Evaluation of Rotary Jetting Tool Application for Matrix Acid Stimulation of Carbonate Reservoir in Southern Area Field of Saudi Arabia. Presented at the International Technology Conference, Kuala Lumpur, Malaysia, 3-5 December. <https://doi.org/10.2523/IPTC-12023-MS>.

Hawkins, M. F. (1956), A Note on the Skin Effect, AIME, Journal of Petroleum Technology, 732-G SPE Paper- 1956.

Hoefner, M. L. and Fogler, H. S., (1987), Role of Acid Diffusion in Matrix Acidizing of Carbonates. *JPT* 39 (02). SPE-13564-PA. <https://doi.org/10.2118/13564-PA>.

Hoefner, M. L. and Fogler, H. S., (1988), Pore Evolution and Channel Formation During Flow and Reaction in Porous Media. *AICHE* 34 (01): 45-54. <https://dx.doi.org/10.1002/aic.690340107>.

Huang, T., Ostensen, L., Hill, A. D., (2000), Carbonate Matrix Acidizing with Acetic Acid. Presented at the SPE International Symposium on Formation Damage Control, Lafayette, Louisiana, 23-24 February. SPE-58715-MS.

Hung, K. M., Hill, A.D.,Sepehrnoori, K. (1989),A Mechanistic Model in Wormhole Growth in Carbonate Acidizing and Acid Fracturing. *Journal of Petroleum Technology*, 16886-PA.

Issa, A. A., Uematsu, H., Bellah, S. (2015), Understanding and Overcoming Challenges of Carbonates Reservoir Matrix Stimulation- The Case of an Offshore Abu Dhabi Reservoir. Presented at the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, 9-12 November. SPE-177756-MS. <https://doi.org/10.2118/177756-MS>.

Jardim, A. T., Neto, Silva, C. A. M., Torres, R. S. Et al. (2013), Self-Diverting Acid for Effective Carbonate Stimulation Offshore Brazil: A Successful History. Presented at the SPE European Formation Damage Conference and Exhibition, Noordwijk, The Netherlands, 5-7 June. SPE-165089-MS. <https://doi.org/10.2118/165089-MS>.

Kankaria, S., Nasr-El-Din, H. A., Rimassa, S. (2017), Matrix Acidizing of Carbonate Rocks Using New Mixtures of HCL/Methanesulfonic Acid. Presented at the SPE International Conference on Oilfield Chemistry, Montgomery, Texas, USA, 3-5 April. SPE-184528-MS.

Kayumov, R., Konchenko, A., Bairamov, A., et al. (2014), Experience of Carbonate Acidizing in the Challenging Environment of the Volga-Urals Region of Russia. Presented at the SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 26-28 February. SPE-168167-MS. <https://doi.org/10.2118/168167-MS>.

Li, N., Yang, M. and Zhang, Q. et al., (2019), A New Multiple Chelating Acid System with Low Damage and Weak Dissolution. Presented at the International Petroleum Technology Conference held in Beijing, China, 26-28 March 2019. IPTC-19324-MS.

Livescu, S., Vissotski, A., Chaudhary, S., (2018), Improved Acid Placement Modeling for Matrix Acidizing Optimization. Presented at the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, 12-15 November. SPE-193119-MS.

Li, X., Gomaa, A., Nino-Penalosa, A., et al., (2015), Integrated Carbonate Matrix Acidizing Model for Optimal Treatment Design and Distribution in Long Horizontal Wells. Presented at the SPE Production and Operations Symposium held in Oklahoma City, Oklahoma, USA, 1-5 March. SPE-173607-MS.

Magee, J., Buijse, M. A. and Pongratz, R., (1997), Method for Effective Fluid Diversion when Performing a Matrix Acid Stimulation in Carbonate Formations. Presented at the Middle East Oil Show, Bahrain, Saudi Arabia, 15-18 March. SPE-37736-MS. <https://doi.org/10.2118/37736-MS>.

Mahmoud, M., Al-Duailej, Y. and Al-Khalid, M., et el., (2014): NMR as a Characterization Tool for Wormholes. Presented at the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, 10-13 November 2014. SPE-171699-PA.

McDuff, D., C. E. Shuchart, S. Jackson, D. Postl, and J. S. Brown, (2010), Understanding Wormholes in Carbonates: Unprecedented Experimental Scale and 3-D Visualization: Florence, Italy, Society of Petroleum Engineers, doi: 10.2118/134379-MS.

McLeod, H. O. (1984), Matrix Acidizing. J Pet Technol 36(12): 2055-2069. SPE-13752-PA. <https://dx.doi.org/10.2118/13752-PA>.

McLeod, H. O. (1989), Significant Factors for Successful Matrix Acidizing. Presented at the Proc., SPE Centennial Symposium,

Socorro, New Mexico, USA, 16-19 October. SPE-20155-MS. <https://dx.doi.org/10.2118/20155-PA>.

Mohamed, I. M., Block, G. I., Abou-Sayed, O. A., et al., (2014), Flow Rate Dependent Skin in Water Disposal Injection Well; Case Study. Presented at the 48th US Rock Mechanism/Geomechanics Symposium, Minneapolis, MN, USA, 1-4 June. ARMA-2014-7758.

Mou, J., Yu, X. and Wang, L., et al., (2019), Effect of Natural Fractures on Wormhole-Propagation Behavior. SPE Production and Operations, SPE-191148-PA.

Muecke, T. W. (1982), Principles of Acid Stimulation. Presented at the International Petroleum Exhibition and Technical Symposium, Beijing, China, 17-24 March. <https://doi.org/10.2118/10038-MS>.

Nasr-El-Din, H. A., Shedd, D., Germack, D., et al., (2015), Evaluation of Methods to Improve Matrix Stimulation of Horizontal Carbonate Wellbores. Presented at the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, 9-12 November. SPE-177934-MS.

Pandey, J. S., Nazari, N., and Thomsen, K., et al., (2018): A Novel Equipment-Friendly and Environment-Friendly Well Stimulation Fluids for Carbonate Reservoir: Better Wormholes and Lower Corrosion at Reservoir Conditions. Presented at the SPE International Conference and Exhibition on Formation Damage Control held in Lafayette, Louisiana, USA 7-9- February. SPE-189496-MS.

Patel, M. C. and Singh, A. (2016), Near Wellbore Damage and Types of Skin Depending on Mechanism of Damage. Presented at the SPE International Conference and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA 24-26 February. SPE-179011-MS.

Pichler, T., Frick, T. P., Economides, M. J., et al., (1992), Stochastic Modeling of Wormhole Growth in Carbonate Acidizing with Biased Randomness. Presented at European Petroleum Conference, Cannes, France, 16-18 November. SPE-25004-MS. <https://doi.org/10.2118/25004-MS>.

Rabie, A. I. and Nasr-El-Din H. A. (2015), Effect of Acid Additives on the Reaction of Stimulating Fluids During Acidizing Treatments. Presented at the SPE North Africa Technical Conference and Exhibition held in Cairo, Egypt, 14-16 September. SPE-175827-MS.

Rachmawati, F. D., Andika, R., Simanjuntak, T. M. et al. (2008), Matrix Stimulation of Thick Carbonate Formation: High Rate Acid and CT Acid Treatments – A Case History. Presented at the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, 3-6 November. SPE-117145-MS. <https://doi.org/10.2118/117145-MS>.

Rae, P. and Lullo, G (2003), Matrix Acid Stimulation – A review of the State-Of-The-Art. SPE European Formation Damage Conference, The Hague, The Netherlands, 13-14 May. SPE-82260. <https://www.onepetro.org/download/conference-paper/SPE-82260-MS?id=conference-paper%2FSPE-82260-MS>.

Sannier, Y., de Lapasse, H., Kirkhus, R., et al. (1999), Boosting Horizontal Well Performance in Carbonates by Selective

Stimulation: Field Cases from Qatar. Presented at the SPE European Formation Damage Conference, The Hague, The Netherlands 31 May-1 June. SPE-54739-MS. <https://doi.org/10.2118/54739-MS>.

Seagraves, A. N., Smart, M. E., Ziauddin, M. E., (2018), Fundamental Wormhole Characteristics in Acid Stimulation of Perforated Carbonates. Presented at the SPE International Conference and Exhibition on Formation Damage Control held in Lafayette, Louisiana, USA 7-9- February. SPE-189506-MS.

Sharaf, M., El-Enien, S. A., Raya, O. A. et al. (2000), A Novel Approach to Acidizing of Carbonates: Case History from the Gulf of Suez in Egypt. Presented at the SPE Annual Technical Conference and Exhibition, Dalla, Texas, USA, 1-4 October. SPE-63182-MS. <https://doi.org/10.2118/63182-MS>.

Shirley, R.M., Zhu, D., Hill, A. D., dan Da Motta, E. P. (2017): Maximizing the Value of Matrix Acidizing Treatments in Carbonate Reservoirs, Eupec featured at 79th EAGE Conference and Exhibition, SPE-185812-MS.

Singh, J. R. (1985), An Evaluation of Acid Frac/Matrix Stimulation of a Tight Limestone Formation in Exploratory Wells in Kuwait. Presented at the Middle East Oil Technical Conference and Exhibition, Bahrain, Saudi Arabia, 11-14 March. <https://doi.org/10.2118/13751-MS>.

Schwalbert, M. P., Zhu, D., Hill, A. D., (2019); Skin-Factor Equations for Anisotropic Wormhole Networks and Limited-Entry Completions. Presented at the SPE International Conference and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 7-9 February. SPE-189486-PA.

Thabet, S., Brady, M., Parsons, C. et al. (2009), Changing the Game in the Stimulation of Thick Carbonate Gas Reservoirs. Presented at the International Petroleum Technology, Conference, Doha, Qatar, 7-9 December. IPTC-13097-MS. <https://doi.org/10.2523/13097-MS>.

Thomas, R. L. and Nasr-El-Din, H. A. (2003), Field Validation of a Carbonate Matrix Acidizing Model: A Case Study of Seawater Injection Wells in Saudi Arabia. Presented at the SPE European Formation Damage Conference, The Hague, The Netherlands 13-14 May. SPE-82271-MS. <https://doi.org/10.2118/82271-MS>.

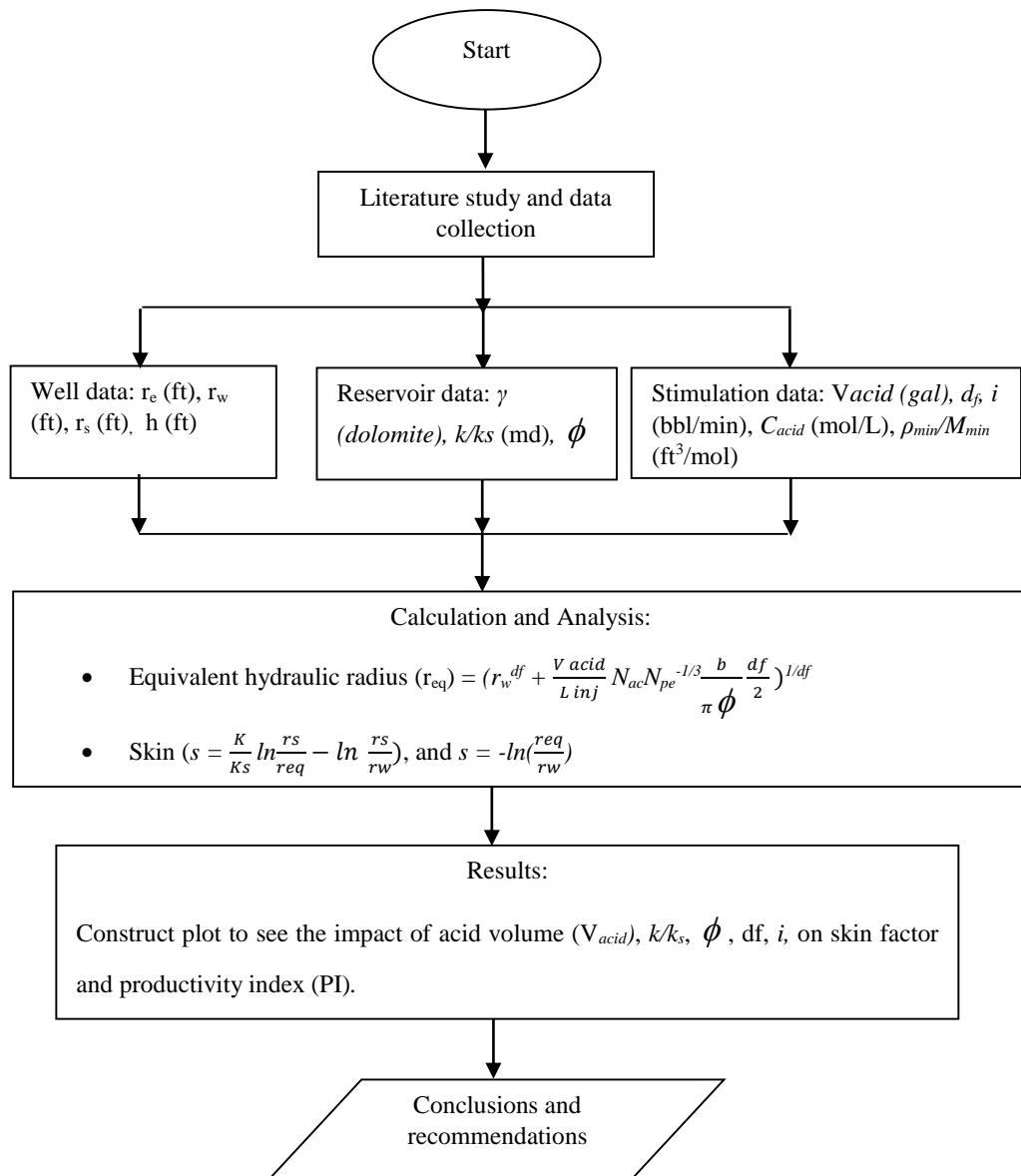
Ussenbayeva, K., Utebaeva, D., Molesworth, G., et al, (2012), Successful Application of a Fit-for-Purpose Acid program in the Tengiz Field. Presented at the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, 11-14 November. SPE-160804-MS. <https://doi.org/10.2118/160804-MS>.

Van Domelen, M. S., Noor, N. T. and Gerard G. (2011), Return to Basics and Proper Planing Opens the Possibility to Acid Stimulate a Difficult Chalk Formation, SPE-144159-MS. SPE European Formation Damage Conference.

Van Domelen, M. S., Hammoud, M. A., Glasbergen, G. (2012), Optimization of Limited Entry Matrix Acid Stimulation with Laboratory Testing and Treatment Pressure Matching. Presented at the SPE International Production and Operations Conference and Exhibition, Doha, Water, 14-16 May. SPE-157429-MS. <https://doi.org/10.2118/157429-MS>.

Van Everdingen, A.F. (1953), The Skin Effect and its Influence on the Productivity Capacity of a Well, Petroleum Transactions Vol. 198.

Wang, Y., A. D. Hill, and R. S. Schechter, (1993), The Optimum Injection Rate for Matrix Acidizing of Carbonate Formations, in Proceedings of SPE Annual Technical Conference and Exhibition: Society of Petroleum Engineer, doi: 102523/26578-MS.


Wei, W., Varavei, A., Sepehmoori, K., (2017), Modeling and Analysis on the Effect of Two-Phase Flow on Wormhole Propagation in Carbonate Acidizing. SPE-186111-PA.

Williams, B. B., Gidley, J. L., Schechter, R. S. et al., (1979), Acidizing Fundamentals, Dallas: Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers of AIME.

Yildiz, T. (2006), Assessment of Total Skin Factor in Perforated Wells. Presented at the SPE European Formation Damage Conference, The Hague, 13-14 May. SPE-82249-PA.

Appendix**Tabel 2.** Well, Reservoir, and Stimulation Data for Case Study

Parameter	Unit	Case
Drainage radius (r_e)	ft	1450
Wellbore radius (r_w)	ft	0.328 (7 7/8" well)
Radial penetration of damage (r_s)	ft	3
Formation thickness (h)	ft	45
Permeability ratio (k/ks)	md	5, 15, 30
Porosity (ϕ)	%	0.15, 0.20, 0.25
Injection rate (i)	bbl/min	1, 3, 5
Acid concentration (C_{acid})	%	10
Density of dissolved mineral (p_{min}/M_{min})	ft ³ /mol	5916 x 10 ⁻⁴
Diffusion constant (D)	cm ² /sec	10 ⁻⁵
y (dolomite)		4
Fractal dimension (df)		1.3, 1.75, 2
b (m^{df-2})		1.25 x 10 ⁴
Acid volume (V_{acid})	gal	1300

Figure 3.1. Research flow

Table 3. Study results of the calculation of equivalent hydraulic radius (r_{eq}) and calculation of post-treatment skin effects with different permeability ratio values.

V acid (gal)	V acid (cuft)	r_{eq}	k/ks = 5		k/ks = 15		k/ks = 30	
			s	s	s	s	s	s
0	0	0.328	8.853415837	30.98695	64.18726			
50	6.68403	0.61012568	5.750159034	21.67718	45.567			
100	13.36806	0.815767329	4.29783799	17.32022	36.8537			
150	20.05209	0.988098539	3.339571734	14.44542	31.1042			
200	26.73612	1.14030133	2.623244723	12.29644	26.8062			
250	33.42015	1.278571247	2.050991276	10.5796	23.3727			
300	40.10418	1.406425744	1.574449719	9.15005	20.5134			
350	46.78821	1.526095608	1.166144566	7.92514	18.0636			
400	53.47224	1.63910371	0.808959612	6.85358	15.9205			
450	60.15627	1.746545994	0.491506885	5.90122	14.0158			
500	66.8403	1.849243166	0.205825205	5.04418	12.3017			
550	73.52433	1.947829239	-0.053870223	4.26509	10.7435			
600	80.20836	2.042806405	-0.291915271	3.55096	9.31527			
650	86.89239	2.134580706	-0.511643699	2.89177	7.99690			
700	93.57642	2.22348614	-0.715674004	2.27968	6.77272			
750	100.26045	2.309801491	-0.906100447	1.708406	5.63016			
800	106.94448	2.393762397	-1.08462428	1.17283	4.55902			
850	113.62851	2.475570218	-1.252646319	0.66876	3.55089			
900	120.31254	2.555398681	-1.411333771	0.19270	2.598767			
950	126.99657	2.633398949	-1.561669455	-0.25830	1.69675			
1000	133.6806	2.709703548	-1.704488701	-0.68675	0.83983			
1050	140.36463	2.784429458	-1.840507465	-1.09481	0.02372			
1100	147.04866	2.857680566	-1.970344041	-1.48432	-0.75529			
1150	153.73269	2.929549649	-2.094536054	-1.85690	-1.50044			
1200	160.41672	3.000119975	-2.213553913	-2.21395	-2.21455			
1250	167.10075	3.069466629	-2.327811567	-2.55672	-2.90009			
1300	173.78478	3.137657602	-2.437675191	-2.88631	-3.55928			

Table 4. Study results of the calculation of the equivalent hydraulic radius (r_{eq}) and the calculation of post-treatment skin effects with different porosity values.

V acid (gal)	V acid (cuft)	$\phi = 0.15$		$\phi = 0.20$		$\phi = 0.25$	
		r_{eq}	s	r_{eq}	s	r_{eq}	s
0	0	0.328	8.85341	0.328	8.85341	0.328	8.853416
50	6.68403	0.53368	6.41945	0.48487	6.89902	0.45487	7.218374
100	13.36806	0.71737	4.94051	0.62755	5.60933	0.571784	6.074674
150	20.05209	0.8877	3.87496	0.76101	4.64520	0.68187	5.194262
200	26.73612	1.0487	3.04147	0.88776	3.87496	0.78684	4.478319
250	33.42015	1.2027	2.35683	1.00927	3.23353	0.88776	3.874961
300	40.10418	1.3509	1.77584	1.12654	2.6839	0.98534	3.353544
350	46.78821	1.4943	1.27120	1.24024	2.20315	1.08009	2.89445
400	53.47224	1.6337	0.82517	1.35090	1.77584	1.17241	2.484358
450	60.15627	1.7697	0.42552	1.45889	1.39129	1.26260	2.113809
500	66.8403	1.90262	0.06352	1.56454	1.04172	1.35090	1.775844
550	73.52433	2.0327	-0.26731	1.66809	0.7212	1.43749	1.465192
600	80.20836	2.16047	-0.57193	1.76974	0.42552	1.52255	1.177767
650	86.89239	2.2859	-0.85419	1.86967	0.15088	1.60620	0.910336
700	93.57642	2.4093	-1.11714	1.96802	-0.10544	1.68856	0.660298
750	100.26045	2.53094	-1.36326	2.0649	-0.34576	1.76974	0.425526
800	106.94448	2.65078	-1.59457	2.16047	-0.57193	1.84982	0.204265
850	113.62851	2.76901	-1.81275	2.25477	-0.7855	1.92886	-0.00496
900	120.31254	2.88575	-2.0192	2.34790	-0.98791	2.00695	-0.20338
950	126.99657	3.0010	-2.21517	2.43994	-1.18016	2.08413	-0.39207
1000	133.6806	3.11511	-2.4016	2.53094	-1.36326	2.16047	-0.57194
1050	140.36463	3.22790	-2.57945	2.62098	-1.53803	2.23601	-0.74376
1100	147.04866	3.33951	-2.74941	2.71009	-1.7052	2.3107	-0.90824
1150	153.73269	3.45001	-2.91219	2.7983	-1.86542	2.38484	-1.06597
1200	160.41672	3.55947	-3.06835	2.8857	-2.0192	2.45822	-1.21749
1250	167.10075	3.66792	-3.21842	2.97238	-2.16711	2.53094	-1.36326
1300	173.78478	3.77542	-3.36285	3.05826	-2.3095	2.60304	-1.50371

Table 5. Study results of the calculation of the equivalent hydraulic radius (r_{eq}) and calculation of post-treatment skin effects with different fractal dimension values.

V acid (gal)	V acid (cuft)	df = 1.3		df = 1.75		df = 2	
		r_{eq}	s	r_{eq}	s	r_{eq}	s
0	0	0.328	8.853416	0.328	8.85341	0.328	8.8534
50	6.68403	0.53368	6.419451	0.61012	5.75015	0.6530	5.4101
100	13.36806	0.71737	4.940516	0.81576	4.2978	0.8633	4.0143
150	20.05209	0.88776	3.874961	0.98809	3.3395	1.0316	3.1239
200	26.73612	1.04879	3.041475	1.14030	2.6232	1.17608	2.4687
250	33.42015	1.20270	2.356834	1.27857	2.05099	1.3046	1.9500
300	40.10418	1.35090	1.775844	1.40642	1.57444	1.4216	1.5207
350	46.78821	1.49436	1.271209	1.52609	1.16614	1.5296	1.1544
400	53.47224	1.63379	0.825171	1.6391	0.80895	1.6305	0.8350
450	60.15627	1.76974	0.425526	1.74654	0.49150	1.7255	0.55186
500	66.8403	1.90262	0.063527	1.8492	0.20582	1.8156	0.2975
550	73.52433	2.03277	-0.26731	1.9478	-0.05387	1.9014	0.0666
600	80.20836	2.16047	-0.57194	2.04280	-0.29191	1.9835	-0.1446
650	86.89239	2.28594	-0.85419	2.13458	-0.51164	2.0623	-0.3394
700	93.57642	2.40938	-1.11714	2.2234	-0.71567	2.1382	-0.5202
750	100.26045	2.53094	-1.36326	2.3098	-0.90610	2.2115	-0.6888
800	106.94448	2.65078	-1.59457	2.39376	-1.0846	2.2825	-0.8467
850	113.62851	2.76901	-1.81276	2.47557	-1.25264	2.3513	-0.9952
900	120.31254	2.8857	-2.01923	2.55539	-1.41133	2.4182	-1.1354
950	126.99657	3.0010	-2.21518	2.6333	-1.56166	2.4832	-1.2681
1000	133.6806	3.11511	-2.40163	2.70970	-1.70448	2.54666	-1.3942
1050	140.36463	3.22790	-2.57945	2.78442	-1.84050	2.60852	-1.5142
1100	147.04866	3.33951	-2.74942	2.85768	-1.9703	2.66895	-1.6287
1150	153.73269	3.45001	-2.91219	2.9295	-2.09453	2.72804	-1.7382
1200	160.41672	3.55947	-3.06835	3.00011	-2.2135	2.7858	-1.8431
1250	167.10075	3.66792	-3.21842	3.06946	-2.3278	2.8425	-1.9437
1300	173.78478	3.775422	-3.36285	3.13765	-2.4376	2.89808	-2.0405